Hormetic modulation of aging and longevity by mild heat stress.
نویسنده
چکیده
Aging is characterized by a stochastic accumulation of molecular damage, progressive failure of maintenance and repair, and consequent onset of age-related diseases. Applying hormesis in aging research and therapy is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. In a series of experimental studies we have shown that repetitive mild heat stress has anti-aging hormetic effects on growth and various other cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. These effects include the maintenance of stress protein profiles, reduction in the accumulation of oxidatively and glycoxidatively damaged proteins, stimulation of the proteasomal activities for the degradation of abnormal proteins, improved cellular resistance to ethanol, hydrogen peroxide and ultraviolet-B rays, and enhanced levels of various antioxidant enzymes. Anti-aging hormetic effects of mild heat shock appear to be facilitated by reducing protein damage and protein aggregation by activating internal antioxidant, repair and degradation processes.
منابع مشابه
Heat shock response and ageing: mechanisms and applications.
Ageing is associated with a decrease in the ability of cells to cope with environmental challenges. This is due partly to the attenuation of a primordial stress response, the so-called heat shock (HS) response, which induces the expression of heat shock proteins (HSPs), composed of chaperones and proteases. The attenuation of the HS response during ageing may be responsible for the accumulation...
متن کاملHormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes.
Progressive accumulation of molecular damage is a hallmark of cellular aging, which is amenable to intervention and prevention by hormesis through mild stress. Our studies have shown that repeated mild heat stress (RMHS) has antiaging effects on growth and various other cellular and biochemical characteristics of normal human skin fibroblasts undergoing aging in vitro. RMHS at 41 degrees C, for...
متن کاملHormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans
Stress-response pathways have evolved to maintain cellular homeostasis and to ensure the survival of organisms under changing environmental conditions. Whereas severe stress is detrimental, mild stress can be beneficial for health and survival, known as hormesis. Although the universally conserved heat-shock response regulated by transcription factor HSF-1 has been implicated as an effector mec...
متن کاملSlowing down aging from within: mechanistic aspects of anti-aging hormetic effects of mild heat stress on human cells.
Since aging is primarily the result of a failure of maintenance and repair mechanisms, various approaches are being developed in order to stimulate these pathways and modulate the process of aging. One such approach, termed hormesis, involves challenging cells and organisms by mild stress that often results in anti-aging and life prolonging effects. In a series of experimental studies, we have ...
متن کاملPrenatal hyperbaric normoxia treatment improves healthspan and regulates chitin metabolic genes in Drosophila melanogaster
Aging is a universal, irreversible process accompanied by physiological declines that culminate in death. Rapid progress in gerontology research has revealed that aging can be slowed through mild stress-induced hormesis. We previously reported that hyperbaric normoxia (HN, 2 atm absolute pressure with 10% O2) induces a cytoprotective response in vitro by regulating fibronectin. In the present s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dose-response : a publication of International Hormesis Society
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2006